sea f(x) una función continua en [a, b]. Sea un conjunto finito de puntos {x0, x1, x2,...xn} tales que a= x0<x1<x2...<xn = b.
consideramos la partición de este intervalo P= {[x0, x1), [x1, x2), ... [xn-1, xn]}.
Entonces la suma de Riemann de f(x) es:
donde xi-1 ≤ yi ≤ xi. La elección de yi en este intervalo suele ser arbitraria.
- Si yi = xi-1 para todo i, entonces denominamos S como la suma de Riemann por la izquierda.
- Si yi = xi, entonces denominamos S como la suma de Riemann por la derecha.
Ejemplo.
Hallar el area de la región bordeada por la gráfica de f(x)=(x-1)^2+2, en el intervalo x=-1 y X=2 mediante la busqueda del límite de la suma de Riemann.
Se divide [-1, 2]:
La enésima suma de Riemann es:
el área de la suma de Riemann: